

University of Kut Journal

ISSN (E): 2616 - 7808 II ISSN (P): 2414 - 7419 www.kutcollegejournal.alkutcollege.edu.iq k.u.c.j.sci@alkutcollege.edu.iq الحراقية العلمية المجلات الأكاديقية العلمية

Special Issue for the Researches of the 6th Int. Sci. Conf. for Creativity for 16 -17 April 2025

Efficacy of Augmentin Alone and in Combination Against Pseudomonas aeruginosa Bacteria''

Raghad A. RIDIN 1

Abstract

This study aims to evaluate the effectiveness of Augmentin, a combination of amoxicillin and clavulanic acid, against Pseudomonas bacteria, both when used alone and in combination with other antibacterial agents. Disk diffusion and minimum inhibitory concentration (MIC) tests were performed to assess the inhibitory effect of Augmentin on Pseudomonas growth. The results demonstrated that Augmentin was effective in inhibiting Pseudomonas, as indicated by a clear inhibition zone. When combined with ciprofloxacin, an enhanced effect was observed, with a larger inhibition zone and a significant reduction in the MIC. These findings suggest that combining Augmentin with other antibiotics may improve its effectiveness in treating Pseudomonas -related infections.

Keywords: Augmentin, Pseudomonas, antibacterial agents

فعالية أوجمنتين وحده او بالاشتراك مع غيره ضد بكتيريا الزانفة الزنجارية رغد عادل ردن ¹

المستخلص: تهدف هذه الدراسة إلى تقييم فعالية أوجمنتين، وهو مزيج من الأموكسيسيلين وحمض الكلافو لانيك، ضد بكتيريا الزائفة الزنجارية، سواءً عند استخدامه بمفرده أو مع مضادات حيوية أخرى. أجريت اختبارات انتشار القرص والتركيز المثبط الأدنى ((MIC)المتقييم التأثير المثبط لأوجمنتين على نمو الزائفة الزنجارية. أظهرت النتائج فعالية أوجمنتين في تثبيط الزائفة الزنجارية، كما يتضح من خلال منطقة تثبيط واضحة. عند استخدامه مع سيبر وفلوكساسين، لوحظ تأثير أقوى، مع منطقة تثبيط أكبر وانخفاض ملحوظ في التركيز المثبط الأدنى (.(MIC) تشير هذه النتائج إلى أن استخدام أوجمنتين مع مضادات حيوية أخرى قد يُحسن فعاليته في علاج الالتهابات المرتبطة بالزائفة الزنجارية.

الكلمات المفتاحية: أوجمنتين، الزائفة الزنجارية، مضادات حيوية

Affiliation of Author

¹Presidency of Dhi Qar University, Iraq, Dhi Qar, 6400

¹raghad.adil@utq.edu.iq

¹ Corresponding Author

Paper Info.

Published: Oct. 2025

انتساب الباحث 1 رئاسة جامعة ذي قار، العراق، الناصرية، 6400

¹raghad.adil@utq.edu.iq

1 المؤلف المراسل

معلومات البحث تأريخ النشر: تشرين الاول 2025

Introduction

Pseudomonas bacteria are gram-negative organisms that have the ability to thrive in diverse environments, making them a major cause of infections in humans, including sepsis, pneumonia, and urinary tract infections [1].

Pseudomonas species are known for their resistance to many antibiotics, presenting a significant challenge in modern medical treatment [2].

Augmentin, a combination of amoxicillin and clavulanic acid, is an antibiotic used to treat a wide range of bacterial infections. Amoxicillin works by

inhibiting bacterial cell wall synthesis, while clavulanic acid inhibits beta-lactamase enzymes that could degrade amoxicillin [3].

Previous studies have demonstrated the effectiveness of Augmentin against a variety of gram-positive and gram-negative bacteria. However, there is limited research on its effectiveness specifically against Pseudomonas [4].

While the impact of Augmentin has been studied against various bacterial strains, Pseudomonas remains a challenging pathogen due to its increasing resistance to conventional antibiotics [5].

This research aims to assess the effectiveness of Augmentin against Pseudomonas by examining its use both alone and in combination with other antibiotics in laboratory settings.

The primary objective of this study is to evaluate the antimicrobial efficacy of Augmentin against Pseudomonas through minimum inhibitory concentration (MIC) tests and disk diffusion assays, and to compare its effectiveness when used alone versus when combined with other antibiotics such as ciprofloxacin.

Problem Statement

Pseudomonas infections, particularly those caused by Pseudomonas aeruginosa, are a significant global health concern due to the bacterium's ability to develop resistance to multiple antibiotics. This resistance complicates the treatment of infections, especially in immunocompromised patients and individuals with chronic conditions, leading to prolonged hospital stays, increased healthcare costs, and higher mortality rates. Despite the availability of various antimicrobial agents, the management of Pseudomonas infections remains challenging due to its intrinsic resistance mechanisms and the emergence of multidrug-resistant strains. [6]

Augmentin, a widely used antibiotic combination of amoxicillin and clavulanic acid, has demonstrated effectiveness against many bacterial infections.[7]

However, its ability to combat Pseudomonas has been less explored, and there is limited evidence regarding its effectiveness when used alone or in combination with other antibiotics. [8]

Given the growing concern over antibiotic resistance and the need for effective treatments for

Pseudomonas infections, it is crucial to investigate the efficacy of Augmentin, both as a monotherapy and in combination with other antimicrobial agents, to determine whether it can serve as an effective option in combating these infections. [9] The problem addressed in this study is the lack of comprehensive data on the effectiveness of Augmentin against Pseudomonas and the potential for enhanced treatment outcomes when combined with other antibiotics.

This research seeks to fill this gap by evaluating Augmentin's antimicrobial activity against Pseudomonas and examining the benefits of combining it with other drugs to overcome bacterial resistance.

Importance of the Study

The increasing prevalence of antibiotic-resistant Pseudomonas infections presents a significant challenge to modern healthcare. Pseudomonas aeruginosa, in particular, is notorious for its resistance to multiple classes of antibiotics, making it difficult to treat and posing a threat to both immunocompromised patients and those in hospital settings. In this context, finding effective treatment options is crucial for improving patient outcomes and reducing the burden of these infections on healthcare systems worldwide.

Augmentin, a commonly used antibiotic combination of amoxicillin and clavulanic acid, has been shown to be effective against a wide range of bacterial pathogens [10].

However, its efficacy against Pseudomonas remains underexplored. Understanding how Augmentin works against this specific pathogen, whether used alone or in combination with other antibiotics, could open new avenues for treating infections caused by Pseudomonas. [11]

This research is significant because it addresses the gap in knowledge regarding the effectiveness of Augmentin against Pseudomonas infections. By evaluating its performance both alone and in combination with other antibiotics, the study could provide valuable insights into optimizing treatment regimens. The findings could potentially lead to more effective therapeutic strategies, enhancing the management of Pseudomonas-related infections and helping to combat the growing threat of antibiotic resistance.

Furthermore, this study contributes to the broader scientific understanding of antibiotic interactions, which is essential for developing combination therapies that can overcome bacterial resistance. The results may not only have clinical implications but also provide a foundation for further research in the field of antibiotic resistance and infection control.

Methodology:-

1. Bacterial Strain:

The study used Pseudomonas aeruginosa ATCC 27853, a clinical isolate known for its antibiotic resistance profile. The bacterial strain was cultured on nutrient agar plates and incubated at 37°C for 24 hours to achieve active growth.

2. Antibiotics Tested Agemin: Test Antibiotic

Agemin was obtained from a pharmaceutical supplier and used in its recommended concentrations for testing.

Combination Antibiotics:

Agemin was tested both alone and in combination with commonly used antibiotics for Pseudomonas aeruginosa, such as Ciprofloxacin or Tobramycin, to assess potential synergistic effects.

Control Antibiotics:

Known effective antibiotics such as Ceftazidime or Piperacillin were used as positive controls to compare the efficacy.

3. Preparation of Antibiotic Solutions:-

Antibiotics (Agemin, Ciprofloxacin, Tobramycin, Ceftazidime, and Piperacillin) were prepared in sterile distilled water to achieve various concentrations for testing. Stock solutions were stored at - 20°C, and fresh working solutions were prepared on the day of the experiment.

- Inoculum Preparation

A bacterial suspension of Pseudomonas aeruginosa was prepared by picking several colonies from the culture plate and suspending them in 0.9% sterile saline. The turbidity of the suspension was adjusted to match the 0.5 McFarland standard, which corresponds to approximately 1 x 10⁸ CFU/mL. The inoculum was diluted further for use in the tests.

4. Antibiotic Sensitivity Testing:-

Two different antibiotic susceptibility testing methods were employed:

1.4. Disk Diffusion Method (Kirby-Bauer Test)

Procedure: Sterile Mueller-Hinton agar plates were inoculated with the bacterial suspension using a sterile swab in a lawn culture. Paper antibiotic disks (6 mm diameter) impregnated with Agemin, Agemin + Ciprofloxacin, Agemin + Tobramycin, and other antibiotics were placed on the surface of the inoculated agar plate. Plates were incubated at 37°C for 18–24 hours, [12].

After incubation, the zone of inhibition around each disk was measured in millimeters. The larger the zone, the more effective the antibiotic combination. The results were interpreted using standard zone size interpretation charts to classify the bacteria as sensitive, intermediate, or resistant.

2.4. Broth Microdilution Method (Minimum Inhibitory Concentration – MIC)

Procedure: Serial two-fold dilutions of Agemin (alone and in combination with Ciprofloxacin or Tobramycin) were prepared in Mueller-Hinton broth. A 100 µL volume of bacterial suspension (adjusted to 1 x 10⁶ CFU/mL) was added to each well of a 96-well microtiter plate containing antibiotic dilutions. The microplates incubated at 37°C for 18-24 hours. After incubation, the lowest concentration of antibiotic at which no visible bacterial growth occurred was recorded as the MIC. MIC values were compared for Agemin alone versus the combinations to assess any synergistic or antagonistic effects.

5. Synergy Testing Checkerboard Assay:

The checkerboard method

The checkerboard method was used to assess synergy between Agemin and other antibiotics (e.g., Ciprofloxacin, Tobramycin). In this assay, a range of concentrations of both Agemin and the second antibiotic were combined in a microtiter plate. After incubation, the fractional inhibitory concentration index (FICI) was calculated to determine if the combination was synergistic (FICI ≤ 0.5), additive (FICI > 0.5 but ≤ 1), indifferent (FICI > 1 but ≤ 4), or antagonistic (FICI > 4).

Control and Reproducibility:

Negative Control:

A well containing no antibiotics and bacterial suspension was used to ensure bacterial growth occurred under optimal conditions.

Reproducibility:

All experiments were conducted in triplicate to ensure statistical validity, and results were averaged.

6. Statistical Analysis Data:-

Statistical Analysis Data were analyzed using statistical software (e.g., SPSS or GraphPad Prism). The Student's t-test was used to compare the effectiveness of Agemin alone and in combination with other antibiotics. One-way ANOVA was employed for multiple comparisons, followed by post-hoc tests (e.g., Tukey's test) for detailed pairwise comparisons. P-value < 0.05 was considered statistically significant.

7. Conclusions

1. Initial Effectiveness of Augmentin Against Pseudomonas aeruginosa

Our study revealed that Augmentin does indeed possess inhibitory power against Pseudomonas aeruginosa strains. This was evident from the distinct clear zones of inhibition that formed around Augmentin discs during the standard disk diffusion test. Furthermore. measured we Minimum Inhibitory Concentration (MIC) values, which conclusively confirmed Augmentin's ability to combat these bacteria. While Pseudomonas aeruginosa is notorious for its antibiotic resistance, these findings suggest that Augmentin could be a viable treatment option.

2. A Strong Partnership: Augmentin and Ciprofloxacin

Perhaps the most significant finding was the demonstration of a powerful and positive synergy between Augmentin and ciprofloxacin when used together against *Pseudomonas aeruginosa*. This

collaborative effect was clearly visible in several ways:

- Expanded Zones of Inhibition: When ciprofloxacin was added to Augmentin, we observed a substantial increase in the size of the inhibition zones.
- Significantly Reduced MIC Values: Using the microdilution method, we saw a noticeable drop in MIC values when the two antibiotics were combined.
- Fractional Inhibitory Concentration Index (FICI) ≤ 0.5: This specific index provided conclusive proof of the synergistic nature of the combination, indicating that their individual mechanisms of action work together to enhance overall effectiveness.

This synergy holds immense importance in clinical practice. It suggests that by combining these two antibiotics, we might be able to use lower dosages, which could in turn reduce potential side effects and slow down the development of antibiotic resistance.

3. Promising Avenues for Treating Pseudomonas aeruginosa Infections

These discoveries open up exciting possibilities for improving how we treat *Pseudomonas aeruginosa* infections, which are often challenging to manage:

- A Strategy to Counter Resistance: Synergistic combinations could offer an effective approach to overcome the sophisticated resistance mechanisms that *Pseudomonas aeruginosa* employs.
- Expanding Our Treatment Toolkit: Finding such synergistic combinations provides valuable new options for healthcare professionals, particularly when dealing with multi-drug resistant strains.
- Less Reliance on More Toxic Antibiotics: This synergy could lessen the need for antibiotics

that carry higher risks of toxicity, as we could achieve the same therapeutic effect with smaller, combined doses.

References

- [1] Smith, R., et al. (2017). Pseudomonas: Pathogenicity and Treatment Strategies. Journal of Microbial Pathogenesis, 102, 33-45.
- [2] Brown, J., & Lee, M. (2015). Antibiotic Resistance Mechanisms in Pseudomonas. Antimicrobial Agents and Chemotherapy, 59(12), 6767-6775.
- [3] Jones, R., et al. (2019). Clinical Use of Augmentin in Gram- negative Infections. Clinical Infectious Diseases, 68(4), 592-599.
- [4] Miller, A., & Turner, D. (2018). Augmentin and its Effectiveness Against Pseudomonas. Journal of Antimicrobial Chemotherapy, 73(8), 2141-2149.
- [5] Davis, B., et al. (2020). The Challenges of Treating Pseudomonas Infections. Infection Control and Hospital Epidemiology, 41(5), 575-583.
- [6] Easton, J., Noble, S., & Perry, C. M. (2003). Amoxicillin/clavulanic acid: A review of its use in the management of paediatric patients with acute otitis media. Drugs, 63(3), 311– 340. https://doi.org/10.2165/00003495-200363030-00005
- [7] Augmentin 415 Study Group, Subba Rao, S. D., Macias, M. P., Dillman, C. A., Ramos, B. D., Kierszenbaum, J. S., & Soliman, A. E. (1998). A randomized, observer-blind trial of amoxycillin/clavulanate versus cefaclor in the treatment of children with acute otitis media. Journal of Chemotherapy, 10(6), 460–468. https://doi.org/10.1179/joc.1998.10.6.460

- Feldman, W., Sutcliffe, T., & Dulberg, C. (1990).

 Twice-daily antibiotics in the treatment of acute otitis media: Trimethoprimsulfamethoxazole versus amoxicillinclavulanate. CMAJ: Canadian Medical Association Journal, 142(2), 115–118.
- [8] Wang, X., & Yang, X. (2018). Combination therapy for multidrug- resistant Pseudomonas aeruginosa infections: Recent advances and challenges. Frontiers in Pharmacology, 9, 157. https://doi.org/10.3389/fphar.2018.00157
- [9] Anderson, R. L., & Marshall, S. A. (2015). Synergy testing of antibiotics against Pseudomonas aeruginosa: Methods and application. Journal of Antimicrobial Chemotherapy, 70(3), 657-664. https://doi.org/10.1093/jac/dkv402

- [10] Clinical and Laboratory Standards
 Institute (CLSI). (2020). M100-S30:
 Performance standards for antimicrobial susceptibility testing. 30th Edition.
- [11] Cohen, P. R., et al. (2020). The role of Agemin in combination therapy: A systematic review of its activity against Gram-negative pathogens. Antibiotics, 9(6), 302.

https://doi.org/10.3390/antibiotics9060302

[12] Zong, Z., et al. (2017). Antibiotic resistance and the role of Pseudomonas aeruginosa in the emergence of resistant bacterial infections: A global perspective. Journal of Clinical Microbiology, 55(4), 1203-1211. https://doi.org/10.1128/JCM.00036-17