

University of Kut Journal

ISSN (E): 2616 - 7808 II ISSN (P): 2414 - 7419 www.kutcollegejournal.alkutcollege.edu.iq k.u.c.j.sci@alkutcollege.edu.iq

Special Issue for the Researches of the 6th Int. Sci. Conf. for Creativity for 16-17 April 2025

Study About High Blood Pressure & Pathophysiology In Human And study the effect of drugs in people in hilla city

Ruqaya Muther Jalil Ewadh ¹, Samah Ahmed Kadhum ², Zahraa Isam Jameel ³

Abstract

The research revealed that, among male and female patients, systematic arterial hypertension was the most often occurring chronic condition. Many other research as well as our hospital analyses of patients—which included gathering their medical history, ascertaining when their high blood pressure initially started, any cooccurring conditions, blood tests, and mineral and salt percentages—support this conclusion. Therefore Running thorough statistical studies on a lot of patient situations produced the following results: The sample had an average age of 51.00 ± 12.21 years; half of the participants were female and the other half were male with an average age of 49.50 ± 9.04 years. Looking at things like poor physical condition, quality of life, obesity, having a cardiovascular disease (CVD), having any of the chronic kidney diseases (CKDs), those who were hypertensive were more likely to be 61 to 80 year old or older than those who were 41 to 60 year old. This applied to men as well as women of non-white background. Our studies brought us to the conclusion that, especially in cases when the patient shows any form of medical symptom, high blood pressure is a chronic, life-threatening disease that should not be disregarded. Ignorance of this condition can have broad effects on the patient's quality of life and general health. With this study, we aimed to clarify this sickness and inspire people to pay attention. We hope God gives everyone with great health therefore reducing the probability of disease.

Keywords: blood pressure, drug, disease

دراسة حول ارتفاع ضغط الدم و علم وظانف الأعضاء المرضية لدى الإنسان ودراسة تأثير الأدوية على الناس في مدينة الحلة 3 رقية منذر جليل 1 ، سماح احمد كاظم 2 ، زهراء عصام جميل 3

المستخلص

كشف البحث أن ارتفاع ضغط الدم الشرياني المنتظم كان الحالة المزمنة الأكثر شيوعًا بين المرضى من الأنكور والإناث. تدعم العديد من الأبحاث الأخرى بالإضافة إلى تحليلات المستشفى للمرضى - والتي تضمنت جمع تاريخهم الطبي والتأكد من متى بدأ ارتفاع ضغط الدم لديهم في البداية وأي حالات مصاحبة واختبارات الدم ونسب المعادن والأملاح - هذا الاستنتاج. لذلك فإن إجراء در اسات إحصائية شاملة على الكثير من حالات المرضى أسفر عن النتائج التالية: كان متوسط عمر العينة 51.00 ± 12.21 عامًا؛ كان نصف المشاركين من الإناث والنصف الآخر من الذكور بمتوسط عمر $49.50 \pm 9.04 \pm 10.02$ عامًا. بالنظر إلى أشياء مثل الحالة البدنية السيئة ونو عية الحياة والسمنة والإصابة بأمراض القلب والأوعية الدموية ((CVD) والإصابة بأي من أمراض الكلى المزمنة ((CKDs)، كان من المرجح أن تتراوح أعمار المصابين بارتفاع ضغط الدم بين 10 و10 عامًا وأكبر من أولئك الذين تتراوح أعمار هم بين 11 و10 عامًا. وينطبق هذا على الرجال وكذلك النساء من ذوي الأصول غير البيضاء. توصلت دراساتنا إلى أن ارتفاع ضغط الدم، وخاصة في الحالات التي يُظهر فيها المريض أي عرض طبي، مرض مزمن يُهدد الحياة ولا ينبغي تجاهله. إن جهل هذه الحالة قد يُؤثر سلبًا على جودة حياة المريض وصحته العامة. هدفنا من هذه الدراسة إلى توضيح هذا المرض وحثّ الناس على الاهتمام به. نسأل الله أن يمنّ على الجميع بالصحة والعافية، مما يُقلّل من احتمالية الإصابة به.

الكلمات المفتاحية: ضغط الدم، الدواء، المرض

Affiliation of Authors

^{1, 2} College of pharmacy, Univ. of Babylon, Iraq, Babil, 51011

³ College of science. , Univ. of Al-Qasim Green. , Iraq. , Al-Qasim , 51013

¹Wsci.roqia.m@uobabylon.edu.iq ²phar.samah.ahmed@uobabylon.edu.iq ³zahraa.isam@science.uoqasim.edu.iq

¹ Corresponding Author

Paper Info.

Published: Oct. 2025

لتساب الباحثين

1. 2 كلية الصيدلة، جامعة بابل، العراق، بابل، 51011

³ كلية العلوم، جامعة القاسم الخضراء، العراق، القاسم، 51013

¹Wsci.roqia.m@uobabylon.edu.iq ²phar.samah.ahmed@uobabylon.edu.iq ³zahraa.isam@science.uoqasim.edu.iq

1 المؤلف المراسل

معلومات البحث تأريخ النشر: تشرين الاول 2025

1. Introduction

With cardiovascular diseases including heart attacks, strokes, and kidney failure so common worldwide, hypertension—a chronic marked by elevated arterial blood pressure—is a major public health issue. Unlike secondary hypertension, which results from pre-existing conditions including renal disease or hormone imbalances, primary hypertension strikes people over time without clear cause. Contributors to this risk are age, heredity, poor lifestyle choices (like a diet high in salt), inadequate physical activity, obesity, heavy alcohol use, smoking, and various chronic conditions including diabetes, renal disease, and sleep apnea). Though usually asymptomatic and sometimes referred to as the "silent killer," severe cases or hypertensive crises can produce symptoms including headaches, dizziness, dyspnea, or nosebleed. Diagnosis is based on blood pressure results; typically, hypertension is defined as values routinely above 130/80 mmHg. To find the fundamental causes or evaluate any problems, we might run more investigations. Apart from several antihypertensive medication classes tailored to every patient's demand, the treatment and management plan includes dietary adjustments, exercise programs, weight control, alcohol consumption restrictions, and smoking cessation. Particularly those with hypertension have to have their blood pressure monitored routinely. Finding and treating secondary hypertension early on is absolutely vital to prevent conditions including renal disease, heart disease, stroke, and vision loss. Additionally crucial is taking care of any underlying diseases aggravating the situation. Known as a hypertensive emergency, severely elevated blood pressure calls for quick medical attention to avoid damage to

important organs. [1]

2. Risk Factors for Hypertension

Determining the probability of developing hypertension mostly relies on age and family history. A family history of the condition can affect the development of hypertension; it is also well known that aging raises the likelihood of acquiring it [2]. Moreover influencing the development of hypertension are racial and gender variations. Men and women in the US have rather similar rates of hypertension overall. Having said that, up to the age of 45 men are more likely than women to have hypertension. By the time they are 65, women are more likely than men to suffer hypertension, therefore reversing the past tendency [3]. Women before menopause have less hypertension than those after menopause, hence some hypothesize that oestrogen might be protective in preventing this ailment [4]. The incidence of hypertension vary obviously depending on race and ethnicity. African Americans have greater hypertension than either non-Hispanic Whites or Caucasians. Moreover, African Americans develop hypertension in a younger age and in more severe form [5,6].

3. Causes

3.1 Causes of primary hypertension

The complicated combination of environmental and inherited elements determines the development of hypertension. Both common genetic variants with little impact on blood pressure and rare genetic variants with significant effects have been found. Based on genome-wide association studies (GWAS), there are 35 genetic loci linked to hypertension; 12 of these loci have recently discovered effect on blood pressure. Most

loci including genes controlling renal and vascular smooth muscle have a sentinel SNP linked to DNA methylation at surrounding CpG sites. Though the precise mechanisms are yet unknown, DNA methylation has the ability to link common genetic variations to a spectrum of diseases. People whose genes include specific polymorphisms—either alone or in concert with other genes—are more likely to experience symptoms connected to hypertension, according to studies. [7]

When a coronary artery grows 1.5 times more than other segments free of occlusion, a condition known as carotid artery ectasia (CAE) results. The estimated unadjusted odds ratio (OR) of CAE was 1.44 when compared one persons hypertension (HTN) to those without HTN [8]. Particularly in those who adopt a Western diet and way of life, the risk of hypertension-or high blood pressure—increases sharply with age. Among the elements in the surroundings influencing blood pressure are central obesity, inadequate exercise, and too high salt intake. Though the fundamental causes are unknown, various early life events including low birth weight, mother's smoking, or non-breastfeeding could raise adults's risk of essential hypertension. It is more likely that raised blood uric acid levels in patients with untreated hypertension and normal blood pressure are the outcome of reduced renal function; the precise link between these factors is yet unknown.

3.2 Causes of secondary hypertension

The final result of secondary hypertension is clear cause. Kidney disease is one of the most often occurring secondary causes of hypertension. Many endocrine problems can cause hypertension. Among these are some acromegaly, Conn's

syndrome, hypothyroidism, hyperaldosteronism, hyperparathyroidism, pheochromocytoma, hyperthyroidism, acromegaly, and renal artery stenosis brought on by fibromuscular dysplasia or atherosclerosis. the Obesity, sleep apnea, pregnancy, aortic coarctation, licorice as a food additive, alcohol intake, certain drugs, natural medicines, and stimulants including caffeine, cocaine, and methamphetamine are other elements that could cause secondary hypertension. [9] According to a 2018 study, women who consumed more than one or two drinks had more risk even though any level of alcohol raised blood pressure in men [10].

4. Pathophysiology

Assuming appropriate cardiac output, increased blood pressure is usually brought on by total peripheral resistance, which is more common in those with established essential hypertension. Certain younger people with prehypertension or "borderline hypertension" may show what is known as hyperkinetic borderline hypertension given their fast heart rate, normal peripheral resistance, and high cardiac output. [10] As these their established essential individuals age, hypertension shows up as a drop in cardiac output and an increase in peripheral resistance. [10] Whether this trend reflects all people who finally acquire hypertension is arguable. In those who already have high blood pressure, [10] it is yet unknown if the constriction of the arteriolar blood vessels contributes to hypertension. One issue brought on by elevated blood pressure is reduced peripheral venous compliance. Through increasing venous return and cardiac preload, it can induce diastolic dysfunction. [11] The difference between the blood pressure readings collected between the

and systolic phases defines pulse diastolic pressure, which older people with hypertension sometimes experience. Hypertensive or isolated systolic hypertension in the elderly is linked with a high pulse pressure by elevated arterial stiffness, a feature of aging that can be exacerbated by hypertension. [12] Hypertension is linked to a rise in peripheral resistance, a topic of much conjecture about reasons. The data points most likely to the sympathetic nervous system or the way the kidneys control salt and water (the intrarenal reninangiotensin system). [12] These mechanisms are not exclusive of one another; most of the time, they both contribute in some degree to essential hypertension, either directly or indirectly. In those with high blood pressure, endothelial dysfunction and vascular inflammation can also contribute in some measure to damage of blood vessels and excessive peripheral resistance. Many immune system compounds, including tumor alpha, interleukin 17, necrosis factor interleukin 6, are believed to contribute to high blood pressure. Interleukin 17 increases their frequency, so they have attracted a lot of interest. [13].

Either too little potassium or too much salt in the diet results in extra intracellular sodium. This salt limits blood flow by contracting the smooth muscle of the blood arteries, hence increasing blood pressure [13].

5. Diagnosis

In addition to measuring blood pressure, other criteria for a hypertension diagnosis include the likelihood of cardiovascular disease, the extent of damage to specific organs, and the presence of any coexisting medical issues. Different groups of patients may require different diagnostic investigations depending on their history, physical exam, and preliminary testing. Some investigations are universal and applied to all patients. A single gene mutation may explain the origin of uncommon instances of hereditary hypertension. [14]. Some cases of high blood pressure may be caused by things that can be fixed. Finding the problem quickly and correctly could greatly improve or cure the condition, which would lower the risk of heart disease. So, it's recommended to screen all patients for secondary hypertension regularly using a combination of a patient's medical history, a physical exam, and some basic laboratory testing. When high blood pressure gets worse quickly, when the body doesn't respond properly to medicine, or when damage to certain organs isn't spread out evenly, secondary hypertension needs to be taken care of. In such circumstances, it is necessary to conduct specific diagnostic tests. [14]. as shown in Figure (1)

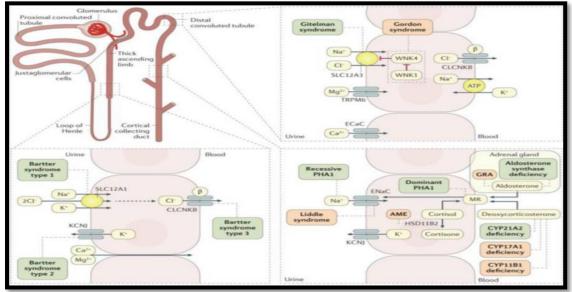


Figure (1): affected pathways in Mendelian hypertension and hypotension disorders, as well as those involving a single gene

It is necessary to capture the date of diagnosis, current and past blood pressure readings, and the of antihypertensive medication collecting a medical history for hypertension. A history of high blood pressure during pregnancy is a substantial risk factor for women. hypertension raises the risk of CVD and its complications, including chronic kidney disease (CKD), a full medical history is important to evaluate the patient's entire risk of CVD. Diabetes mellitus, dyslipidemia, and a smoking history suggest further care. Adults at high risk for cardiovascular disease (CVD) may benefit from implementing lifestyle adjustments in addition to antihypertensive medication. taking Risk calculators help with this [13].

The goals of the hypertension physical examination include confirmation of the diagnosis, assessment of target organ damage, and search for secondary causes. Patients should sit calmly for five minutes with the cuff at their level of heart before having their blood pressure taken. By averaging two to three readings obtained at different times, one can get a somewhat exact

estimate of blood pressure. One should at least once measure both arms. Any noteworthy variations in the outcomes would point to possible vascular problems. For patients who are overweight, especially important is wearing cuffs of the right size. Measuring blood pressure both sitting and standing will help one find orthostatic hypotension, more common in the elderly. [14]

6. Management

6.1 Non-Pharmacological Management

People with hypertension should change their way of life in line with advice for avoiding the condition. Reducing systolic blood pressure by 2-4 mmHg can be accomplished with dietary changes including less salt (less than 2.3 grams daily for those who are highly sensitive to it) and more potassium (3.5 to 5.0 grams daily). Most countries estimate their average daily salt intake to be 9–12 grams, much more than the advised limit, While the American Heart Association advises no more than 3.8 grams, European standards call for daily salt intake between 5 and 6 grams [14]. Consistent with frequently carried out randomized controlled

studies, the DASH-sodium study offered strong evidence that reducing sodium intake decreases blood pressure. Those who already have low potassium intake are more likely to experience a drop in blood pressure when their potassium intake is raised; this effect is strengthened when their salt intake is reduced [14]. Daily alcohol intake of no more than 2 standard drinks for men and no more than 1 drink for women will help to somewhat lower blood pressure by 2-4 mmHg [15]. Regular exercise—especially endurance training—can significantly reduce blood pressure; the most successful sessions last 40 to 60 minutes and should be completed three times weekly at least. Losing weight is absolutely important since overweight raises blood pressure and could cause the need for more antihypertensive medicine.

6.2 Antihypertensive Pharmacotherapy

Many classes of hypertension drugs have been produced, and extensive outcome studies have proved their benefits for CVD morbidity and death, hence guiding antihypertensive pharmacology to progress over several decades. These days, there are an amazing variety of antihypertensive medications available for treating hypertension; each one belongs to a different class and comes in a different fixed-dose combination Usually, first-line range. antihypertensive medication treatment consists in monotherapy or a mix of medicines, Combining therapies may help patients whose preoperative blood pressure was higher. First line of defense against hypertension are ACE inhibitors, sartans, dihydropyridine calcium channel blockers, thiazide diuretics, and angiotensin II receptor blockers. For those with heart failure, low left ventricular ejection fraction, or who have had a myocardial infarction, some

recommendations call for beta-blockers as the first antihypertensive medication [14]. The choice should rely on the efficiency and tolerability of every person. A patient's ethnicity affects how they respond to hypertension medications; for Black patients, doctors may first prescribe diuretics and calcium channel blockers. Given a higher risk of teratogenicity, several first-line antihypertensives—such as ACE inhibitors and angiotensin II receptor blockers—are not advised, though. Under such circumstances, preferable choices are other drugs that block the sympathetic nervous system, such alpha-methyldopa or beta adrenoreceptor blockers. Whenever at all possible, it is better to avoid split doses of antihypertensive drugs since they lower adherence. [15]

6.2.1 Diuretics

Low-dose diuretic therapy can lower stroke, heart attacks, congestive heart failure, and mortality. Using a potassium-sparing diuretic helps to considerably lower the danger of low potassium and magnesium levels; loop diuretics work just as well as thiazides. Even at modest dosages, diuretics improve the action other antihypertensive drugs. Using diuretics with potassium-sparing reduces the sudden death risk. In patients with heart failure, a common outcome of long-term hypertension, spironolactones have been proven to lower mortality and morbidity over a lengthy period of time. [15]

even if it was difficult. Following three months of hospital visits for sample collection and analysis, with the guidance of

6.2.2 Beta-blockers

A high sympathetic tone, angina, and a past of myocardial infarction are some legitimate reasons to utilize β-blockers. Often a good option is to add a diuretic or a calcium channel blocker as a small dosage reduces the negative side effect of βblockade—that is, tiredness. Symptoms connected to β-blockade treatment are depression, tiredness, and sexual dysfunction. Therapy benefits must be evaluated considering these unfavorable consequences. A known side effect of arterial hypertension, β-blockers have lately been used increasingly in the treatment of heart failure. Patients with heart failure must be administered these drugs with great care, starting with very low dosages to stop a worsening of their condition. [16]

6.2.3 Calcium channel blockers

Examples of dihydropyridine type calcium channel blockers are nifedipine, nimodipine, and amlodipine; non-dihydropyridine calcium channel blockers are verapamil and diltiazem. Though they have opposite inotropic and chronotropic effects, diltiazem and verapamil both lower PPVR. Side effects of short-acting dihydropyridines include nifedipine are reflex sympathetic activation and tachycardia. Conversely, long-acting medications such as slow-release nifedipine and amlodipine lack as much sympathetic activation. Short-acting dihydropyridines seem to raise a risk of sudden death. But the significant benefits of active treatment compelled the SYST-EUR trial-which compared nitrendipine to a placebo—to be early terminated.Calcium channel blockers prescribed alone to those with peripheral vascular disease, Raynaud's phenomenon, asthma, or who do not take β-inhibitors; they are also quite effective in elderly persons. Should you have heart failure, it is advised against using diltiazem or verapamil. Although nifedipine is helpful when given sublingually for severe hypertension, great

caution is needed since hypotension is a possibility. Common links among diuretics, ACE inhibitors, β -blockers, and calcium channel blockers are [16]

6.2.4 Angiotensin II receptor blockers and angiotensin-converting enzyme inhibitors

Except for bilateral renal artery angiotensin-converting enzyme (ACE) inhibitors have a low risk of side effects and few contraindications, hence they are becoming preferred first-line therapies for hypertension. Although it addresses unilateral renovascular hypertension, long-term pharmaceutical treatment is not as effective as angioplasty or surgery to repair the renal artery. This is due to ischemic atrophy's possibility. Angiotensin-converting enzyme (ACE) inhibitors help patients with diabetes and hypertension since they slow down kidney damage rate. When hypertension coexists with heart failure, they also are the drugs of choice. Beyond only decreasing blood pressure, the HOPE research found that ramipril reduced the risk of cardiovascular events in persons without hypertension. [17] In almost 9000 hypertension patients, the LIFE study compared losartan, an angiotensin receptor antagonist, with atenolol, a βblocker. Patients who got Losartan showed more marked declines in mortality and morbidity, largely because the number of strokes dropped more dramatically. Losartan helped to better lower another independent risk factor for negative outcomes, left ventricular hypertrophy. Losartan produced the most notable benefit for patients with isolated systolic hypertension. These positive findings inspired an editorial under the title "Angiotensin blockade in hypertension: a promise fulfilled." It's crucial to keep in mind the comparator of the study—a β-blocker—has never before shown any significant benefits above a placebo in the elderly.

7. Epidemiology

In pre-industrial societies, typical blood pressure values were close to 115/75 mmHg, which is probably human ideal blood pressure, and the dispersion of these readings was limited. But in most modern societies, systolic blood pressure rises steadily and progressively with age. The count of people diagnosed with absolute hypertension rises sharply in response to even modest changes in the mean population BP. Although hypertension mostly affects the well-off at the beginning of economic development, it is seen both inside and between nations that the condition and its consequences become more widespread among the poor in later stages of economic growth. From 2000 to 2010, the prevalence of hypertension has been rising significantly more quickly than epidemiological transitions. [18]

8-Material and methods

8.1 Demographic study:

With an emphasis on age groups and the causes of their frequency in men and women, this study was carried out to ascertain the causes of high blood pressure and the elements influencing it.

8.2 Study groups

A total of about 100 male and female patients from Babylon Governorate were included in the study. The patients' ages, socioeconomic backgrounds, and levels of education and employment were all carefully recorded.

8.3 Data collection

The samples were collected following a visit to Babylon's Imam Al-Sadiq Teaching Hospital, where we were able to conduct our research and evaluations under the guidance of our respected doctor by going over patient records and blood test results. We were able to accomplish it because of God, our doctor, everything went according to plan.

Note that we started collecting samples on 12/15/2023 until 3/1/2024.

9-Results

The average age of the participants was 51.00 ± 12.21 years, and half of them were female. The other half belonged to male groups, with an average age of 49.50 ± 9.04 . In Table 1 you can find the study's other factors described. as shown in Table (1) and table(2):

Table (1): Main features of the study population with Systemic arterial hypertension

Variations	NO%			
Gender				
Male	50(100%)			
Female	50(100%			
Age groups				
20-40	8(8%)			
41-60	34(34%)			

61-80	62(62%)				
Addres					
Babylon	100(100%)				
Occupation					
working	44(44%)				
No working	41(41%)				
Retirement	15(15%)				
Medical history					
HT /DM /CVA	33(33%)				
HT	26(26%)				
HT/Hiperlipidema	8(8%)				
ht/Jionts pain	6(6%)				
HT/CKD	8(8%)				
HT/Agina	4(4%)				
HT/CANCER	4(4%)				
HT/CVA/prostate hyber	5(5%)				
HT/ASTHMA	3(3%)				
HT/HF	3(3%)				
HOM	for HT				
Bispralol/crestor/diostar	4(4%)				
carvidilol/lasix/atrovastatin	6(6%)				
LAXIX/Avas	5(5%)				
Amalodipine	4(4%)				
HIPRIL A	6(6%)				
atacand crestor	5(5%)				
diovan	6(6%)				
betaloc	3(3%)				
extra plus / amlodpin	4(4%)				
tensart	6(6%)				
distro plus	4(4%)				
metoprilol diovan	6(6%)				
betaloc metopolol	5(5%)				
ralsartan carvidolol	3(3%)				
tenormin	4(4%)				
temlodipin	6(6%)				
Carvidiol	5(5%)				
Colpidogril	3(3%)				

HIPRIL A	
Lisinopril	4(4%)
Aimalodpin	6(6%)
isosartan	5(5%)

Table (2): Prevalence of high blood pressure among male and females in the study

Parameters	Male	Female	T test	P= value
rarameters	Mean±S.err	Mean±S.err		
Age	49.50 ± 9.04	51.00 ± 12.21	3.65	0.04*
WBCs	9.50 ± 3.04	9.59 ± 2.64	0.13	0.07
Neu	7.17 ± 2.27	10.43 ± 1.86	1.38	0.28
Lym	1.95 ± 0.42	1.77 ± 0.22	0.40	0.08
mon	0.56 ± 0.15	0.53 ± 0.06	0.19	0.16
Eos	0.32 ± 0.05	0.26 ± 0.05	0.73	0.29
Bas	0.01 ± 0.001	0.13 ± 0.04	2.33	<0.0001*
Lym%	68.02 ± 4.81	71.28 ± 2.50	0.56	0.58
Mon%	19.88 ± 4.04	12.06 ± 1.26	2.13	0.02*
Eos%	9.48 ± 1.74	3.68 ± 0.50	3.72	0.001*
Bas%	4.57 ± .84	6.39 ± 1.41	2.66	0.11
RBC	0.13 ± 0.02	1.10 ± 0.34	2.33	0.000*
HGB	3.32 ± 0.24	4.41 ± 0.33	2.42	0.025*
НСТ	103.22 ± 6.45	115.33 ± 5.75	1.38	0.18
MCB	49.94 ± 2.56	33.36 ± 1.31	0.89	0.021*
МСН	84.40 ± 3.03	56.03 ± 6.50	3.43	0.005*
PLT	188.88 ± 27.94	175.39 ± 30.99	0.29	0.77
MPV	10.36 ± 0.61	8.51 ± 0.31	2.92	0.23
BDW	15.11 ± 0.44	53.15 ± 3.93	3.16	0.005*
PCT	0.27 ± 0.08	011 ± 0.002	7.01	0.000*
PLCC	64.88 ± 5.44	51.04 ± 3.97	0.75	0.048*

10-Discussion

Research indicates that, among all chronic diseases, men and women have systematic arterial hypertension more frequently than any other [18]. Most studies revealed that the average age of those diagnosed with hypertension was more than sixty. Furthermore, aging increases the risk of high blood pressure since it alters the structure of the body

and causes the main arteries to become stiffer and less flexible with time [18].

A disturbance in the balanced redox could lead to an increase in reactive oxygen species; this could be brought about by the accumulation of oxidative damage from aging combined with a weakened antioxidant defense system. Thus, oxidative stress might magnify the cellular reactivity of early inflammatory mediators. Aging influences both the innate and adaptive immune systems of the host; the latter is also linked with an inflammatory state [18].

Studies in this scoping review [18] link systematic arterial hypertension to a greater mortality rate in men than in women. The outcomes might have something to do with safeguarding the X chromosome and sex hormones, which are absolutely crucial for the development of both the natural and adaptive immune systems. Since in humans the ACE2 gene is on the X chromosome at the Xp22 locus [19,20].

Systemic inflammation and vascular pathology could be shown by hematological markers including mean platelet volume (MPV), neutrophil lymphocyte ratio (NLR), and red cell distribution width (RDW [13-15]. Several vascular diseases, including stroke and coronary artery disease, were clearly useful in prediction. Examining how closely hematological markers matched HT [19-21] helped the researchers also determine the degree of HT and how well they might forecast end-organ damage. Our aim in doing this review was to underline the clinical relevance of hematological indicators and their part in the main HT. Though the condition is usually thought to have multiple causes, essential HT has a complex one including unknown genetic, environmental, and behavioral elements. Common mechanisms of HT are considered to be vascular hypertrophy, insulin resistance, changed T-cell function, reninangiotensin-aldosterone system activation, sympathetic nervous system hyperactivity, higher renal salt retention, and dysfunction of endothelial cells. Still, it seems that the etiology of HT and the concomitant end-organ damage is mostly related to inflammation and oxidative stress [19].

An indication of inflammation, the count of white blood cells, or WBCs, increases in HT. Greater WBC levels in the highest quartile—which were found in non-dipping HT [19] might point to an enhanced inflammatory response and end-organ damage.

An raised mean platelet volume has clearly been linked to a higher risk of cardiovascular disease [19]. Platelets help to produce atherothrombosis, plaque instability, and atherosclerotic lesions. MPV was proved to be a negative prognostic factor for ischemic coronary heart disease [20]. Furthermore able to forecast microvascular endorgan damage caused by high blood pressure, diabetic microvascular issues (such nephropathy), and microvascular damage in coronary vessels was MPV [20]. Stepwise, the association between MPV and the degree of hypertension sickness gets more and more complex. Higher mean platelet volume was correlated with issues with the eyes [20-21] and a rise in the level of masked HT [20-21].

There was no evidence of a higher fatality risk linked to any class of antihypertensive [19–21]. Regarding drug therapy, this result is important. The death risk for persons with systemic arterial hypertension who did not get any treatment was higher than that of hypertension participants antihypertensive [19]. receiving therapy Conversely, several studies revealed no difference in the frequency of side effects or clinical results between groups of individuals who got and those who did not get antihypertensive medication [21]. Especially, hypertension is a chronic illness, hence both pharmacological and non-pharmacological utilized treatments have to be constantly throughout life to regulate it. Therefore, it is quite important to investigate the adherence to pharmaceutical therapy and lifestyle choices of hypertension patients.

Conclusion

Haematological indicators including RDW, NLR, and MPV reveal important underlying causes of HT and related vascular complications: oxidative stress and inflammatory state. The degree of HT, hypertensive end-organ damage, and hematological indicators have a gradual correlation. It is unknown, though, if these criteria help to explain HT's origin or whether their rise results from the course of hypertension sickness. The precise pathophysiologic mechanism of HT and its correlation to hematological indices must still be found by more investigation. Everyone agrees that these normal hematological values are crucial for estimating the performance of someone with HT; any variation from them could indicate that high blood pressure is damaging end organs.

Reference

- [1] "World Hypertension Day 17 may 2021,"
 World Hypertension Day 17 May 2021 PAHO/WHO | Pan American Health
 Organization,
 https://www.paho.org/en/events/worldhypertension-day-17-may-2021 (accessed
 Mar. 29, 2025).
- [2] "Improving hypertension control in 3 million people: Country experiences of programme development and implementation," World Health Organization, https://iris.who.int/handle/10665/336019 (accessed Mar. 29, 2025).
- [3] "V diretrizes Brasileiras de Hipertensão Arterial," *Arquivos Brasileiros de*

- *Cardiologia*, vol. 89, no. 3, Sep. 2007. doi:10.1590/s0066-782x2007001500012
- [4] M. Shiota, A. Yokomizo, and S. Naito, "Prosurvival and anti-apoptotic properties of androgen receptor signaling by oxidative stress promote treatment resistance in prostate cancer," *Endocrine-Related Cancer*, vol. 19, no. 6, Oct. 2012. doi:10.1530/erc-12-0232
- [5] A. Hamad, M. Kluk, J. Fox, M. Park, and J. E. Turner, "The effects of aromatase inhibitors and selective estrogen receptor modulators on eye development in the zebrafish (*danio rerio*)," *Current Eye Research*, vol. 32, no. 10, pp. 819–827, Jan. 2007. doi:10.1080/02713680701573712
- [6] F. Zhang *et al.*, "Association of renalase gene polymorphisms with the risk of hypertensive disorders of pregnancy in northeastern Han Chinese population," *Gynecological Endocrinology*, vol. 36, no. 11, pp. 986–990, Apr. 2020. doi:10.1080/09513590.2020.1750000
- [7] J. Malyszko, H. Bachorzewska-Gajewska, and S. Dobrzycki, "Renalase, kidney and cardiovascular disease: Are they related or just coincidentally associated?," *Advances in Medical Sciences*, vol. 60, no. 1, pp. 41–49, Mar. 2015. doi:10.1016/j.advms.2014.10.001
- [8] G. Li et al., "Catecholamines regulate the activity, secretion, and synthesis of renalase," Circulation, vol. 117, no. 10, pp. 1277–1282, Mar. 2008. doi:10.1161/circulationaha.107.732032
- [9] S. C. Hennebry *et al.*, "Renalase, a novel soluble fad-dependent protein, is synthesized in the brain and peripheral nerves," *Molecular Psychiatry*, vol. 15, no. 3, pp. 234–236, Feb. 2010. doi:10.1038/mp.2009.74

- [10] G. V. Desir, "Renalase deficiency in chronic kidney disease, and its contribution to hypertension and cardiovascular disease," Current Opinion in Nephrology & Current Opinion in Nephrology & Mar. 2008. doi:10.1097/mnh.0b013e3282f521ba
- [11] M. Zhao et al., "HIF-1α/JMJD1A signaling regulates inflammation and oxidative stress following hyperglycemia and hypoxia-induced vascular cell injury," Cellular & amp; Molecular Biology Letters, vol. 26, no. 1, Sep. 2021. doi:10.1186/s11658-021-00283-8
- [12] F. Yamakura and H. Kawasaki, "Post-translational modifications of superoxide dismutase," *Biochimica et Biophysica Acta* (*BBA*) *Proteins and Proteomics*, vol. 1804, no. 2, pp. 318–325, Feb. 2010. doi:10.1016/j.bbapap.2009.10.010
- [13] C. Luchini, B. Stubbs, M. Solmi, and N. Veronese, "Assessing the quality of studies in Meta-analyses: Advantages and limitations of the Newcastle Ottawa Scale," *World Journal of Meta-Analysis*, vol. 5, no. 4, p. 80, 2017. doi:10.13105/wjma.v5.i4.80
- [14] W. Wang and A. C. Lo, "Diabetic retinopathy: Pathophysiology and treatments," *International Journal of Molecular Sciences*, vol. 19, no. 6, p. 1816, Jun. 2018. doi:10.3390/ijms19061816
- [15] T. Salvatore *et al.*, "Dysregulated epicardial adipose tissue as a risk factor and potential therapeutic target of heart failure with preserved ejection fraction in diabetes," *Biomolecules*, vol. 12, no. 2, p. 176, Jan. 2022. doi:10.3390/biom12020176
- [16] S. Roy, D. Kim, and A. Sankaramoorthy, "Mitochondrial structural changes in the pathogenesis of diabetic retinopathy," *Journal*

- of Clinical Medicine, vol. 8, no. 9, p. 1363, Sep. 2019. doi:10.3390/jcm8091363
- [17] R. A. Kowluru, A. Kowluru, M. Mishra, and B. Kumar, "Oxidative stress and epigenetic modifications in the pathogenesis of diabetic retinopathy," *Progress in Retinal and Eye Research*, vol. 48, pp. 40–61, Sep. 2015. doi:10.1016/j.preteyeres.2015.05.001
- [18] M. Kanwar, P.-S. Chan, T. S. Kern, and R. A. Kowluru, "Oxidative damage in the retinal mitochondria of diabetic mice: Possible protection by superoxide dismutase," *Investigative Opthalmology & Mamp; Visual Science*, vol. 48, no. 8, p. 3805, Aug. 2007. doi:10.1167/iovs.06-1280
- [19] J. P. Higgins, S. Green, and R. J. Scholten, "Maintaining reviews: Updates, amendments and feedback," *Cochrane Handbook for Systematic Reviews of Interventions*, pp. 31–49, Sep. 2008. doi:10.1002/9780470712184.ch3
- [20] A. Guerra-Castellano *et al.*, "Oxidative stress is tightly regulated by cytochrome *c* phosphorylation and respirasome factors in mitochondria," *Proceedings of the National Academy of Sciences*, vol. 115, no. 31, pp. 7955–7960, Jul. 2018. doi:10.1073/pnas.1806833115
- [21] A. S. Al-Kharashi, "Role of oxidative stress, inflammation, hypoxia and angiogenesis in the development of diabetic retinopathy," *Saudi Journal of Ophthalmology*, vol. 32, no. 4, pp. 318–323, Oct. 2018. doi:10.1016/j.sjopt.2018.05.002